Approx と Alg が圏同値であること

myuon

2018年9月2日

定義 1. category Approx を次で定義する.

- object: poset
- arrow: poset relation $f \subseteq A \times B$ が approximable とは、次の条件を満たすものとする. A から B への射をこのような approximable function f によって定める.
 - 任意の $a \in A$ に対してある $b \in B$ が存在して, $(a,b) \in f$ となる. (全域性)
 - $-(a,b) \in f$ かつ $(a,b') \in f$ に対し、ある $b'' \in B$ が存在して、 $(a,b'') \in f$ かつ $b \sqsubseteq b''$ かつ $b' \sqsubseteq b''$ となる.
 - $-a' \sqsubseteq a$ かつ $(a',b') \in f$ かつ $b \sqsubseteq b'$ のとき, $(a,b) \in f$
- id: $\{(x,y) \in A \times A \mid y \sqsubseteq x\}$
- composition: $f:A \to B \succeq g:B \to C$ に対して $g \circ f = \{(a,c) \in A \times C \mid \exists b \in B. (a,b) \in f \land (b,c) \in g\}$

Proof. (id が approximable であること) $(x,x) \in id$ により、全域性はよい. $(a,b) \in id$ かつ $(a,b') \in id$ のとき、 $b \sqsubseteq a$ かつ $b' \sqsubseteq a$ であり、 $(a,a) \in id$ となるからよい. また、 $a' \sqsubseteq a$ 、 $(a',b') \in id$ 、 $b \sqsubseteq b'$ のとき、 $b \sqsubseteq b' \sqsubseteq a' \sqsubseteq a$ であるから $(a,b) \in id$ である.

(identity law) $f: A \to B$ を任意にとる. $f \subseteq f \circ id$ は明らか. $(a,b) \in f \circ id$ とすると, $a' \in A$ が存在して $(a,a') \in id$ かつ $(a',b) \in f$ である. ここで, $a' \sqsubseteq a$ であるので, approximable function の定義により $(a,b) \in f$ である. よって $f \circ id \subseteq f$ となる.

定義 2. category Alg を次で定義する.

- object: algebraic cpo
- arrow: continuous function

事実. poset A に対して、その ideal の集合 Idl(A) は algebraic cpo となり、Idl(A) の compact element は A の principal ideal である.

定理 3. algebraic cpo に対して compact element を対応させる functor K は Approx と Alg の間の圏同値を与える.

Proof. (essentially surjective) 任意の poset A に対して、 $\mathbf{Idl}(A)$ が approximable function の 同型 $K(\mathbf{Idl}(A)) \simeq A$ を与えることをみる。ところで、 $K(\mathbf{Idl}(A)) = \mathbf{PIdl}(A)$ であったので、同型の対応は $\downarrow a$ と $a \in A$ を対応付ければよいことは明らか。relation $f \subseteq A \times \mathbf{Idl}(A)$ を、 $f = \{(a, \downarrow b) \mid b \sqsubseteq a\}$ によって定めればこれが approximable であり、さらに前述の同型を与えることもわかる。

(fully faithful) K を functor に拡張したものを $\varphi: \mathbf{Alg} \to \mathbf{Approx}$ と書くことにする. arrow part は次のようにする:

$$\varphi(f:A\to B) = \{(a,b)\in K(A)\times K(B)\mid b\sqsubseteq f(a)\}$$

また, ψ : **Approx** \to **Alg** \varnothing object part $varepsilon A \mapsto \mathbf{Idl}(A)$ で与える. 次に arrow part であるが, approximable function $g: A \to B$ varepsilon B varepsi

$$\psi_*(g) := x \mapsto \big| \left| \{ b \in K(B) \mid \exists a \in K(A). \ a \sqsubseteq x \land (a, b) \in g \} \right|$$

念のため書き下せば、 $\psi(g)$ は次のような関数である: $S \in \mathbf{Idl}(A)$ をとる. S は principal ideal を使って $S = \bigsqcup\{\downarrow a \mid \downarrow a \subseteq S\}$ と書ける. このとき、 $\psi(g)(S) = \psi(g)(\bigsqcup\{\downarrow a \mid \downarrow a \subseteq S\}) = \bigsqcup\{\downarrow (\psi_*(a)) \mid \downarrow a \subseteq S\}$ である.

approximable function $g:A\to B$ を任意にとる. $(a,b)\in \varphi(\psi(g))$ は $b\subseteq \psi_*(g)(a)=\bigsqcup\{b'\in K(B)\mid \exists a'\in K(A).\ a'\subseteq a\wedge (a',b')\in g\}$ と同値であり、この条件は $(a,b)\in g$ に明らかに一致する. よって $\varphi\circ\psi=\mathrm{id}$ である.

次に、continuous function $f:A\to B$ と $a\in A$ を任意にとる。 $\psi(\varphi(f))(a)=f(a)$ を示したいが、これも compact element で一致することのみ言えばよいから a は compact であるとしてよい。このとき左辺は

$$\psi_*(\varphi(f))(a) = \bigsqcup \{b \in K(B) \mid \exists a' \in K(A). \ a' \sqsubseteq a \land (a', b) \in \varphi(f)\}$$
$$= \bigsqcup \{b \in K(B) \mid \exists a' \in K(A). \ a' \sqsubseteq a \land b \sqsubseteq f(a')\}$$
$$= \bigsqcup \{b \in K(B) \mid b \sqsubseteq f(a)\}$$
$$= f(a)$$

と変形できる. よって $\psi \circ \varphi = \mathrm{id}$ となることがわかる.